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Relations between two matrices:

Fibonacci-Pascal matrix and inverse

FFS polynomials matrix
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Abstract. In this article, we prove basic properties such as addition
and multiplication of the Fibonacci-Frobenius-sigmoid (FFS) polyno-
mials. we prove basic properties such as addition and multiplication
of the Fibonacci-Frobenius-sigmoid (FFS) polynomials. After factor-
izing the FFS polynomials matrix by the Fibonacci matrix, a certain
relation is derived between the inverse FFS polynomials matrix and
the Fibonacci-Pascal matrix.
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1. Introduction

First introduced by the Indian mathematician Pingala, the Fibonacci

sequence is a sequence in which every number is the sum of the two preced-

ing ones. Fibonacci sequence is closely related to the golden ratio (see [6,

9]). Binet’s formula is easily mentioned as the formula expresses the n-th

Fibonacci number by using the golden ratio and its conjugate value. As n

increases, the ratio of two consecutive Fibonacci numbers converges to the

golden ratio (see [9]).

Lucas numbers also share the same recursive relationship with Fi-

bonacci numbers in the sense that each term is the sum of the two previous
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terms. However, Lucas numbers start with different values compared to

Fibonacci numbers (see [1]).

Based on the basic concepts of the Fibonacci sequence and its coeffi-

cients, we define the Fibonacci exponential function.

Definition 1.1 [6, 7]. Let 0 ≤ n ≤ m where n and m are non-negative

integers. Fibonacci coefficients are defined as(
m

n

)
F

=
Fm!

Fm−n!Fn!
,

where Fm! = FmFm−1Fm−2 · · ·F1 and F0! = 1.

We note that

(
m

0

)
F

= 1 and

(
m

n

)
F

= 0 for m < n.

Now, consider the exponential function containing Fibonacci numbers

as the denominator.

Definition 1.2 [6, 7]. Let t ∈ R and n be a non-negative integer. The

Fibonacci exponential function etF is

etF =

∞∑
n=0

tn

Fn!
.

Unique Pascal matrices can be defined depending on what type of

binary coefficient is used (see [2, 5]).

For example, Pascal matrix can be uniquely defined by using a certain

coefficient called Fontené-Ward generalized binomial coefficients (see [5]).

However, continuing on with the previous topic, we consider Pascal matrices

with Fibonomial coefficients.

Definition 1.3 [2, 7]. The Fibonacci-Pascal matrix Pn[x] = (pn(x; i, j))

is defined as

pn(x; i, j) =


(
i

j

)
F

xi−j , if i ≥ j,

0, otherwise.
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Definition 1.4 [7]. For n ≥ 2, the inverse of the Fibonacci-Pascal matrix

Vn[x] = (vn(x; i, j)) is defined as

vn(x; i, j) =

bi−j+1

(
i

j

)
F

xi−j , if i ≥ j,

0, otherwise,

where b1 = 1 and bn = −
n−1∑
k=1

bk

(
n

k

)
F

.

Sigmoid function, also known as the logistic curve, is a differentiable,

bounded, real function defined for all real input values and has a non-

negative derivative at each point with one inflection point. Based on the

shape of the logistic curve, it is also known as the S-shaped sigmoid curve

(see [8]).

In artificial neural networks, the term is used as the logistic function

and the non-smooth functions, also known as hard sigmoids are used for

efficiency as well (see [12]).

Generally, a sigmoid function is used when there is a shortcoming in

a specific mathematical model. For example, the van Genuchten-Gupta

model is based on the S-curve and used to model the relation between the

speed of growth in wheat fields and soil salinity (see [10]).

Definition 1.5 [3]. Sigmoid numbers and polynomials are defined respec-

tively as

∞∑
n=0

Sn
tn

n!
=

1

e−t + 1
,

∞∑
n=0

Sn(x)
tn

n!
=

1

e−t + 1
etx.

Definition 1.6 [4]. Let n be a non-negative integer. Then, Fibonacci
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sigmoid polynomials is

∞∑
n=0

Sn,F (x)
tn

Fn!
=

1

e−tF + 1
etxF .

For x = 0 in Definition 1.8, we note

∞∑
n=0

Sn,F
tn

Fn!
=

1

e−t + 1
.

where we call Sn,F the Fibonacci sigmoid numbers.

Definition 1.7. Let u ∈ C \ {1} and n be a non-negative integer. The

generating function of the FFS polynomials Sn,F (x;u) is defined as follows:

1− u
2(e−tF − u)

etxF =

∞∑
n=0

Sn,F (x;u)
tn

Fn!
.

For x = 0, we note that

∞∑
n=0

Sn,F (u)
tn

Fn!
=

1− u
2(e−tF − u)

.

Here, Sn,F (u) is the FFS number.

To sum up, we introduced the definition of the Fibonacci sequence and

its coefficients. Implementing this concept into the exponential function,

we defined the Fibonacci exponential function. Then, we introduced the

Fibonacci-Pascal matrix and its inverse.

Finally, we summarized the definition and applications of the sigmoid

functions and defined the Fibonacci sigmoid polynomials via their generat-

ing function.

This paper is roughly outlined as follows: In Section 2, basic opera-

tions such as addition and multiplication of FFS polynomials are proved.

In Section 3, we factorize the FFS polynomials matrix and derive a relation

to the Fibonacci-Pascal matrix.
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2. Basic operations on FFS polynomials

In this section, we desire to find a relation between the FFS polyno-

mials and numbers. Based on the additivity of the Fibonacci exponential

function, we also prove the additivity and symmetricity property of the

FFS polynomials and its numbers.

Theorem 2.1. Let k be a non-negative integer. Then, we have

Sn,F (x;u) =

n∑
k=0

(
n

k

)
F

Sn−k,F (u)xk.

Proof. To find a relation between FFS numbers and polynomials, we use

the generating function as the following:

∞∑
n=0

Sn,F (x;u)
tn

Fn!
=

1− u
2(e−tF − u)

etxF

=

∞∑
n=0

Sn,F (u)
tn

Fn!

∞∑
n=0

xn
tn

Fn!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
F

Sn−k,F (u)xk

)
tn

Fn!
.

(2.1)

Comparing both sides of Equation (2.1), we get the given result.

Lemma 2.2. The following holds for the Fibonacci exponential function

for all t, s ∈ R:

et+sF = etF e
s
F

Proof. For t, s ∈ R, we have

etF e
s
F =

∞∑
n=0

n∑
k=0

tn−kF

Fn−k!

skF
Fk!

=

∞∑
n=0

n∑
k=0

(
n

k

)
F

tn−kF skF
Fn!

=

∞∑
n=0

(t+ s)nF
Fn!

= et+sF .

(2.2)
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Additivity property of the following function is a key ingredient used

for some of the central results in upcoming results.

Now, we observe the additivity within the FFS polynomials.

Theorem 2.3. Let x, y ∈ C. Then, the following equation holds:

Sn,F (x+ y;u) =

n∑
k=0

(
n

k

)
F

Sn−k,F (x;u)yk.

Proof. Using Definition 1.7, we obtain

∞∑
n=0

Sn,F (x+ y;u)
tn

Fn!
=

1− u
2(e−tF − u)

e
t(x+y)
F

=

∞∑
n=0

Sn,F (x;u)
tn

Fn!

∞∑
n=0

yn
tn

Fn!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
F

Sn−k,F (x;u)yk

)
tn

Fn!
.

(2.3)

The additivity of ex+yF preserves by Lemma 2.2. Comparing the left

and right hand side of (2.3), we derive the stated result.

Corollary 2.4. Setting y = 1 in Theorem 2.3, it holds that

Sn,F (x+ 1;u) =

n∑
k=0

(
n

k

)
F

Sn−k,F (x;u).

On top of the additivity property, we also consider the symmetric

relations of the FFS polynomials and numbers.

Theorem 2.5. Let α, β ∈ R. Then, we have the following basic symmetric

relation:

n∑
k=0

αn−kβkSn−k,F (α−1x;u)Sk,F (β−1y;u)

=

n∑
k=0

βn−kαkSn−k,F (β−1x;u)Sk,F (α−1y;u).
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Proof. We consider form A as

A :=
(1− u)2e

t(x+y)
F

4(e−αtF − u)(e−βtF − u)
. (2.4)

Organizing the numerator of A, we have

A :=
(1− u)

2(e−αtF − u)
etxF

(1− u)

2(e−βtF − u)
etyF

=

∞∑
n=0

Sn(α−1x;u)
(αt)n

Fn!

∞∑
n=0

Sn(β−1y;u)
(βt)n

Fn!

=

∞∑
n=0

(
n∑
k=0

αn−kβkSn−k(α−1x;u)Sk(β−1y;u)

)
tn

Fn!
.

(2.5)

Also, by switching the order of the split numerator of A, the following

also holds:

A :=
(1− u)

2(e−βtF − u)
etxF

(1− u)

2(e−αtF − u)
etyF

=

∞∑
n=0

(
n∑
k=0

βn−kαkSn−k(β−1x;u)Sk(α−1y;u)

)
tn

Fn!
.

(2.6)

Hence, we can obtain the basic symmetric relation within the FFS

polynomials by comparing (2.5)and (2.6).

Corollary 2.6. Fix α = 1 in Theorem 2.5. Then, the symmetric relation

within the FFS polynomials with respect to β becomes
n∑
k=0

βkSn−k,F (x;u)Sk,F (β−1y;u)

=

n∑
k=0

βn−kSn−k,F (β−1x;u)Sk,F (y;u).

Corollary 2.7. Let x = 0 in Theorem 2.5. Then, the symmetric relation

between FFS numbers would be
n∑
k=0

αn−kβkSn−k,F (u)Sk,F (β−1y;u)

=

n∑
k=0

βn−kαkSn−k,F (u)Sk,F (α−1y;u).
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3. Relations between FFS polynomials matrix
and Fibonacci-Pascal matrix

In this section, we initially define the inverse FFS polynomials ma-

trix. Intuitively, the factorization of the FFS polynomials matrix via the

Fibonacci matrix is shown. Also, we obtain an equation that represents

the relation between the FFS polynomials matrix and the Fibonacci-Pascal

matrix. Ultimately, from this relation, we can easily derive the relation

between the FFS numbers matrix and the Fibonacci-Pascal matrix.

Proposition 3.1. The inverse of the (n + 1) × (n + 1) FFS polynomials

matrix Dn,F (x;u) = [dij,F ] is defined as

dij,F =



(
i

j

)
F

i−j∑
k=0

(
i− j
k

)
F

1

Fi−k−j+1
bk+1x

k−j , if i ≥ j,

0, otherwise.

Corollary 3.2. The FFS polynomials matrix Sn,F (x;u) can be factorized

in terms of Fibonacci matrix Fn as follows:

Sn,F (x;u) = FnMn,F (x;u).

If x = 0, the following holds:

FnMn,F (u) = Sn,F (u).

Based on Corollary 3.2, we derive an example of Mn,F (u) when n = 3.

Example 3.3. Consider n = 3. For the FFS polynomials matrix, we have

F3M3,F (x;u)

=

[
1 0 0 0
1 1 0 0
1 1 0 0
1 2 2 0

]
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×



1

2
0 0 0

1

2
x +

u

2(1 − u)

1

2
0 0

1

2
x
2 −

3 − 2u

2(1 − u)
x −

2 + u

2(1 − u)
−

1

2(1 − u)2

1

2
x +

2u − 1

2(1 − u)

1

2
0

1

3
x
3

+
u

1 − u
x
2 −

(
5 − 2u

2(1 − u)
+

1

2(1 − u)2

)
x

−
2 + 2u

1 − u
−

1

(1 − u)2
−

1

(1 − u)3
−

1

2
x
2 −

2 − u

1 − u
x −

1 + u

1 − u
−

1

(1 − u)2
x +

u

1 − u

1

2


= Sn,F (x;u).

Hence, we obtained the factorization of FFS polynomials matrix via

the Fibonacci matrix and derived an example of the factorization process.

Proposition 3.4. Let Sk,F (u) be the FFS number. Then, consider the

following statement:

n∑
k=0

1

Fn−k+1

(
n

k

)
F

Sk,F (u) = Fn!δn,0

where δn,0 is the Kronecker delta function.

Theorem 3.5. The following relation between the inverse FFS polynomials

matrix and the Fibonacci-Pascal matrix holds:

Dn,F (x;u) =
1

2
(Pn+1[x] + In+1) .

Proof. Let

n∑
k=0

(
n

k

)
F

Sn−k,F (x;u)xk + Sn,F (x;u) = 2δn,i−j .

Then, the following equation is verified by substituting i− j instead of i for

the values of k and using Proposition 3.4.

(Sn,F (x;u) (Pn+1[x] + In+1))ij

=

i∑
k=j

(
i

k

)
F

Si−k,F (x;u)

(
k

j

)
F

xk−j +

(
i

j

)
F

Si−j,F (x;u)

=

(
i

j

)
F

i∑
k=j

(
i− j
k − j

)
F

Si−k,F (x;u)xk−j +

(
i

j

)
F

Si−j,F (x;u)
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=

(
i

j

)
F

[
i−j∑
k=0

(
i− j
k

)
F

Si−j−k,F (x;u)xk + Si−j,F (x;u)

]

=

(
i

j

)
F

2δ0,i−j .

(3.1)

For i = j,

(
i

j

)
F

δ0,i−j = 1 holds.

On the other hand,

(
i

j

)
F

δ0,i−j = 0 when i 6= j. Hence, the inverse

matrix is obtained.

Based on the Kronecker delta function previously defined for the FFS

number, we now define the Kronecker delta function for the FFS number

matrix.

Proposition 3.6. Let Sn,F (u) be the FFS number matrix. Then, it holds

that
n∑
k=0

(
n

k

)
F

Sn−k,F (u) + Sn,F (u) = 2δ0,n.

Theorem 3.7. Let Pn+1 = [pij ] be the (n+ 1)× (n+ 1) Fibonacci-Pascal

matrix and In+1 be the identity matrix. Also, let Sn,F (u) be the FFS

numbers matrix. Then, the following equation holds:

1

2
(Pn+1 + In+1) = Sn,F (u)−1.

Proof. Consider the above proposition and recall the calculation of the

proof of Theorem 3.5. Then, we have(
Sn,F (u)

1

2
(Pn+1 + In+1)

)
ij

=
1

2
(Sn,F (u)Pn+1 + Sn,F (u))ij

=

i∑
k=j

(
i

k

)
F

Si−k,F
1

2

(
k

j

)
F

+
1

2

(
i

j

)
F

Si−j,F (u)
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=
1

2

(
i

j

)
F

i∑
k=j

(
i− j
k − j

)
F

Si−k,F (u) +
1

2

(
i

j

)
F

Si−j,F (u)

=
1

2

(
i

j

)
F

 i∑
k=j

(
i− j
k − j

)
F

Si−k,F (u) + Si−j,F (u)


=

1

2

(
i

j

)
F

2δ0,i−j =

(
i

j

)
F

δ0,i−j .

(3.2)

Hence, for i = j,

(
i

j

)
F

δ0,i−j = 1 holds. Also, for i 6= j,

(
i

j

)
F

δ0,i−j =

0. Therefore, multiplication of Sn,F (u) and
1

2
(Pn+1 + In+1) becomes an

identity matrix.

4. Conclusion

After observing the Fibonacci exponential function and the generating

function of the FFS polynomials, we derived basic properties for the FFS

polynomials. Based on the form of the Fibonacci-Pascal matrix and the

inverse FFS polynomials matrix, we were able to prove the related form

between them using the identity matrix and the Kronecker-delta function.
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